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A theory of the coupling of evanescent optical fields between metallic nanoparticles is developed to provide
a basis for designing plasmonic systems. The interaction between metallic nanoparticles is investigated using
an electrostatic approximation that describes the localized surface-plasmon resonances for particles much
smaller than the wavelength of the exciting radiation. A coupling coefficient is derived relating the surface
charge on one particle to the induced surface dipoles on another. The effect of dipole radiation damping is
included to model the radiation broadening of the plasmon resonances. The theory enables an analysis of the
key factors that control the coupling and that lead to resonances of the particle system. It is shown that the
coupling between a simple pair of particles, in the form of stripes, leads to frequency splitting and the
formation of a dark mode. The dark mode is associated with little scattering of light but large evanescent
electric fields. It is shown that the dark mode has low radiation damping compared to an associated bright
mode. The theory can be applied to an arbitrary number of interacting particles, allowing them to be configured
to achieve the desired properties of the plasmonic system.
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I. INTRODUCTION

Plasmonic systems have received much interest in recent
years due to their ability to guide, manipulate and enhance
light fields on the nanoscale. The design of structures capable
of producing strong near-fields has become an active area of
plasmonics research with applications in highly sensitive
sensor technology,1–6 surface-enhanced Raman scattering
�SERS�,2,7–20 plasmon solar cells,21–26 and near-field
microscopy.2,14,16,27,28

Plasmonic substrates need to be carefully designed to pro-
duce sharp resonances which enhance the light field and
minimize losses. Strong local-field enhancement leads to en-
hanced nonlinearity which is important for SERS, whereas
sharp resonances can lead to high sensitivity to local refrac-
tive index changes, both effects enabling chemical sensing at
low concentrations. Most plasmonic substrate designs re-
quire laying metallic nanoparticles on a surface,8,9,13,19 using
random fractal surfaces,8,9,15,17 or using gaps between litho-
graphically designed particles �“hot spots”�.8,9 Although it is
now possible to create a myriad of different nanoscale sur-
face structures, there is still a lack of knowledge over what
kinds of surfaces lead to maximal field enhancement and
high sensitivity8,9 and what are the most important factors in
surface design for a SERS substrate, sensor device, or solar
cell panel.

Normally, field enhancement is hindered by two major
factors—radiative damping and resistive losses. The latter is
a property of the material, while the former depends on the
induced dipole �and to a lesser extent multipole� fields of the
particle, which can be controlled with careful design of ge-
ometries.

During the analysis of a random substrate using a near-
field microscopy probe, Stockman et al.17 found it was pos-
sible to stimulate two types of plasmon modes. One of the
modes exhibited strongly radiating fields, while the other did
not. The first mode was termed a luminous mode, while the

latter was termed a dark mode due to the lack of re-radiation.
Mechanisms for coupling light into dark modes and the ac-
tual purposeful design of dark mode structures is still an
active field in plasmonics research, with one of the aims
being to obtain strong near-fields for sensing. It has been
suggested that dark modes cannot be excited efficiently using
an incident field but may be excited by nearby radiative
particles.29 In simulations by Zhang and colleagues, a nearby
radiative particle strongly couples to the incident light and to
the nonradiative particle, producing electromagnetic induced
transparency �EIT�.29 There are many other geometries used
to create EIT, with applications in cloaking, improvement of
laser beam transmission, new optoelectronic devices, and
elimination of self-focusing and self-defocusing effects.30–36

The work of Zhang and colleagues outlines the basic prin-
ciple of not only EIT but also stimulation of dark modes,
however it does not provide any experimental evidence or
investigate/discuss the key design elements for creating plas-
monic structures capable of supporting dark modes.29 The
stimulation of strong near-fields for sensing applications was
not discussed.

In this paper we investigate the key design parameters for
creating resonant plasmonic structures. This is done by ex-
tending the work of Mayergoyz et al.37–39 on the electrostatic
resonances of nanoparticles, also known as the nonretarded
boundary element method �BEM�,40–44 to include the effects
of interparticle coupling and radiation losses. The key result
is an analytical expression for the electric field distribution of
an ensemble �or collection� of particles that depends on the
parameters describing each particle �shape, material, surface,
and dipole charge distribution� and their geometrical distri-
bution �interparticle distances and relative orientations�.

Studies of the electromagnetic coupling between metallic
nanostructures have been of some interest in the formation of
strong electric fields between metallic nanoparticle dimers
for SERS �Ref. 45� and in the optically induced forces for
the manipulation of plasmonic nanoparticles,46–48 both of
which are affected by the proximity of one particle to an-
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other. While there have been theoretical treatments of the
interactions between dielectric particles, such as the multi-
pole expansion method,49 our particular focus is on nano-
structures exhibiting localized surface plasmons. The electro-
static approximation allows us to represent the interactions
based on the natural plasmonic resonances �eigenmodes� of
the metallic nanostructures which make the formalism appli-
cable to arbitrary shapes. This leads to relatively simple re-
lationships for the coupling between nanostructures which
are important for enabling us to design or analyze plasmonic
systems.

This paper is organized as follows: in Sec. II we review
the main results of the electrostatic approximation that al-
lows a calculation of the collective resonant modes of an
ensemble of nanoparticles. The effect of radiation damping is
important and is included in the formulation. In Sec. III the
formalism is modified to show explicitly the interactions and
coupling between all the particles in the ensemble, including
radiation damping. This leads to an expression for the cou-
pling coefficient describing the effect of the electric field
from one particle on the charge distribution of another. The
consequences of this coupling are investigated in Sec. IV
with a simple two-particle system. It is shown that the cou-
pling leads to the formation of symmetric and antisymmetric
modes, the latter exhibiting the properties of a dark mode.

II. ELECTROSTATIC RESONANCES OF PARTICLES

In this section we discuss the calculation of the electro-
static resonances associated with metallic nanoparticles that
are much smaller than the wavelength of the exciting radia-
tion, i.e., the electrostatic approximation which is valid for

�b�2�d/��2 � 1, �1�

where � is the vacuum wavelength, �b is the electric permit-
tivity of the background medium, and d is the average diam-
eter of the particle system.3,37–39,42 Since the excitation wave-
length is large compared to the system size, the fields within
the particle and in the surroundings oscillate with approxi-
mately the same phase, so that at any moment of time the
particle field appears electrostatic.37 This approximation be-
gins to fail when there are significant phase delays between
different parts of the structure, and this is related to its char-
acteristic size d. The failure occurs when condition �1� is no
longer valid which expresses the square of the relative phase
shift in radians across the nanostructure. It must be borne in
mind that while the electrostatic theory provides a useful
guide to resonances and associated effects, for larger struc-
tures the values calculated using the electrostatic theory will
deviate from the true values so that exact methods, such as
BEM, are required for precise calculations. A useful discus-
sion of this issue is given in Ref. 42. We begin by reviewing
the theory for an individual particle, which is also valid for
an ensemble, and we then include the effects of radiation
damping.

A. Electrostatic approximation

The electromagnetic field surrounding a particle can be
determined by solving for the self-sustained distribution of

surface charge ��r� or surface dipoles ��r� across the surface
of the nanoparticle. At a given point on the surface of a
particle q, the surface charge is the source of an electric field
that induces electric charges at all other points across the
surface. The equation linking the induced charge at r with all
charges distributed over the surface rq is given by37

��r� =
�q

2�
� ��rq�

�r − rq� · n̂

�r − rq�3
dSq, �2�

with n̂ the surface normal at r and

�q =
�q − �b

�q + �b
, �3�

where �q is the electric permittivity of the particle and �b is
the electric permittivity of the background medium. The pa-
rameter �q is the eigenvalue associated with the eigenvalue
equation Eq. �2�. For a given particle geometry �q takes on a
large number of discrete values �q

k, each one corresponding
to a particular resonant mode and to a surface charge density
�q

k�r�. For a given mode, �q is known and once the back-
ground permittivity is chosen, then Eq. �3� fixes the permit-
tivity �q which in turn fixes the resonant frequency of the
particle. It has been shown37 that valid source-free reso-
nances occur for �q�1 which, through Eq. �3�, requires that
�q	0. This permittivity is obtained with metals at frequen-
cies below the bulk plasma frequency so that the resonant
modes are identified with localized surface plasmons.

A similar eigenvalue equation can be obtained for the sur-
face dipole distribution

��r� =
�q

2�
� ��rq�

�rq − r� · n̂q

�r − rq�3
dSq, �4�

where �q simultaneously satisfies Eq. �2� and �4�. Neither
eigenfunctions �q

k�r� nor �q
k�r� associated with a particular

set of eigenvalues �q
k form an orthogonal set of functions.

However, they form a biorthogonal set that obeys the rela-
tionship

� �q
j �r��q

k�r�dS = 
 jk. �5�

As a consequence there is an ambiguity in the scaling of the
functions because any eigenfunction can be multiplied by a
constant factor f and its adjoint function multiplied by 1 / f so
that Eq. �5� is still obeyed. This ambiguity is also true for the
relationship between the particle resonance and the size of
the nanoparticle. As long as the ratio of the particle dimen-
sions remains the same �regardless of size� the resonance
permittivity �q remains the same.37 This is a key feature of
the electrostatic approximation.

An external electric field, oscillating with angular fre-
quency �, applied to a nanoparticle, excites a surface charge
distribution ��r ,�� that can be represented by a superposi-
tion of the surface charge eigenmodes �q

k�r� �Ref. 39�
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��r,�� = �
k

aq
k����q

k�r� . �6�

The frequency-dependent coefficient aq
k��� in the expansion

is related to the strength of the applied field that is exciting
the resonance and, according to Mayergoyz et al.,39 it is
given by

aq
k =

��q − �b���q
k − �b�

�q
k − �q

E0 ·� n̂�q
k�rq�dSq. �7�

The applied field E0 has been taken out of the integration
since according to the electrostatic approximation, it is con-
stant across the particle. �q is the complex permittivity of the
nanoparticle at the particular excitation frequency while �q

k

represents the real part of �q for the kth resonance.
By defining a vector

bq
k =

��q − �b���q
k − �b�

�q
k − �q

� n̂�q
k�rq�dSq, �8�

the expansion coefficient is simply given by

aq
k = bq

k · E0. �9�

This coefficient describes the contribution to the total surface
charge �Eq. �6�� by the kth resonant mode induced by an
applied field. Implicit in this description is a time depen-
dence of the applied field with a form exp�−i�t�.

B. Radiation damping

A particle interacting with an applied electric field reradi-
ates or scatters radiation into the surrounding environment.
Associated with this is a damping factor that limits the
strength of the resonance. Although the general form of the
electrostatic interaction between a particle and an applied
electromagnetic field can be written down in terms of multi-
poles, the dominant radiation is from the oscillating dipole
moment of the particle. While higher-order multipoles can be
included, for simplicity we model only the dipole radiation
effects which requires an expression for the dipole moment.
For a particle q, the dipole moment is given by

p =� r��r�dS =� �
k

aq
kr�q

k�r�dS = �
k

pq
k�bq

k · E0� .

�10�

Note that the scalar product is between the vector bq
k and the

applied electric field. A more useful expression is obtained
by writing the two eigenfunction terms as a dyadic

�J = �
k

pq
kbq

k , �11�

then the induced dipole moment is given by the familiar
expression

p = �J · E0. �12�

The effects of the radiation of energy can be included in the
above equations by equating the radiation reaction force Frad
to an effective electric field Erad=Frad /e. When a charge e

accelerates under the action of a force, it radiates electromag-
netic energy. This modifies the motion of the charge, which
appears as if it was acted upon by an additional force—a
radiation reaction force.50 By considering the work done on
the charge by the radiation and equating this to the radiated
energy, an expression for the radiation reaction force is ob-
tained,

Frad =
e2

6��bc3 v̈ , �13�

where v is the velocity of the charge and c is the speed of
light. The radiation reaction force depends on the second
derivative of the velocity with respect to time and involves
the electric permittivity of the background �b.

Now consider a dipole moment p=er0 exp�−i�t� that os-
cillates with time. The position vector is r=r0 exp�−i�t� so
that the second derivative of the velocity is

v̈ = r� = i�3r0 exp�− i�t� = i�3p/e . �14�

Then the radiation reaction field is

Erad =
ik3

6��b
p , �15�

where k=� /c is the wave number of the radiation.
The effect of the radiation reaction force can be included

in the expression for the induced resonances by adding the
reaction field to the applied field E0+Erad in Eq. �12�. This
leads to an expression for the dipole moment

p = �IJ−
ik3

6��b
�J	−1

· �J · E0, �16�

which involves the unit dyadic IJ. This is the same form as
that derived by Wokaun et al.51 who considered the effect of
radiation damping in surface-enhanced Raman scattering.
After some simple algebra using Eq. �16�, the expansion co-
efficient in Eq. �9� can be written as

aq
k = bq

k · �IJ−
ik3

6��b
�J	−1

· E0. �17�

Expression �17� gives the expansion coefficient of the sur-
face charge density induced by an applied electric field tak-
ing into account the effect of re-radiation of energy. The
relative strength of the kth resonance is controlled by the
factor bq

k which is large for modes with a strong dipolar
character �see Eq. �8��. However, as implied by Eq. �15�, this
is also associated with strong radiation and therefore leads to
large factors in the denominator of Eq. �17�, thus limiting the
near-field strength. So there is a trade-off between resonance,
and therefore near-field strength, and radiation damping. The
term aq

k�q
k�r� is invariant with changes to the overall dimen-

sions of the particle, on account of orthogonality condition
�5� and the presence of �q

k�r� in Eq. �8�. However, the calcu-
lation of the dipole moment, as in Eq. �10�, requires us to
specify the scale or units of volume since it involves the
integral of a length over a surface. This means that the ra-
diation damping can only be determined once the absolute
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size of the particle is known �i.e., the damping changes with
particle size�.

Given the charge distribution ��r� the electric field asso-
ciated with the excitation of the particle is obtained from
Coulomb’s law. For any given particle, the excitation is
found by solving Eq. �2� for the eigenvalues and eigenfunc-
tions. This is conveniently done by dividing the surface of
the particle into a set of discrete elements and converting the
formula into a matrix product.37 Then the solution is ob-
tained by solving the matrix eigenvalue problem.

It is important to note that the procedure outlined in this
section is not limited to a single particle, but it can easily
handle an ensemble of particles. Even though the surfaces
are disconnected, the solution to the eigenvalue problem still
provides the resonant modes of the ensemble. However, we
wish to gain some insight into the coupling between particles
that leads to the resonances of the ensemble.

III. INTERPARTICLE COUPLING

It was shown in Secs. II A and II B that the excitation of
a resonance is by coupling of the incident light with the
surface dipole moment integrated over the particle. For par-
ticle modes where the dipole moment is zero, there is no
coupling to the incident radiation, which is generally of a
dipolar character. Such modes do not lose energy through
dipole radiation either. The excitation of these modes can
occur through the evanescent fields of nearby particles, and
the modes can radiate, either through higher-order multipole
radiation, or by evanescent field coupling to the nearby par-
ticles. It is of interest to determine the factors that control
this coupling and of greater interest to find asymmetries in
the coupling so that electromagnetic energy is preferentially
coupled one way or the other.

In this section we develop the formalism for describing
the coupling between an ensemble of nanoparticles, where
the eigenfunctions �q

k�r� and �q
k�r� and eigenvalues �q

k of
each particle are known. We begin by generalizing the results
of Sec. II to multiple particles and then, for completeness,
include the effects of dipole radiation damping. The key re-
sult is an expression for the coupling coefficient between
particles which is examined in greater detail in Sec. IV.

A. Multiparticle coupling

The electric field at position rl arising from a particle j is
given by Coulomb’s law

E j�rl� =
1

4��b
� �rl − r j�

�rl − r j�3
�

k

aj
k� j

k�r j�dSj

=� g�rl − r j��
k

aj
k� j

k�r j�dSj . �18�

The charge distribution has been expressed as a sum over the
surface charge eigenfunctions using Eq. �6� and the sub-
scripts have been added to indicate the particle to which the
parameters belong. This equation also defines a function g
which we describe as a vector Green’s function linking two

points, one on each particle. The expansion coefficient is
given by Eq. �7�,

aj
k = f j

k� � j
k�r j�n̂ j · E�r j� · dSj , �19�

which is re-written to keep the field inside the integral and
where the resonance factor is

f j
k =

�� j − �b��� j
k − �b�

� j
k − � j

. �20�

The complex permittivity of the jth particle is � j and the real
permittivity associated with the kth eigenvalue of the jth par-
ticle is � j

k, as would be evaluated using Eq. �3�. This factor
becomes large at resonance where the real part of the permit-
tivity of the particle equals the permittivity associated with
the eigenvalue. The imaginary part of � j, which accounts for
losses in the metal, prevents Eq. �20� from becoming infinite
at resonance.

The electric field at some position r j on the jth particle
arising from the applied field E0�r j� and the electric fields
from N surrounding particles is

E�r j� = E0�r j� + �
m=1

N

Em�r j� . �21�

In this formula, we define the electric field from the jth par-
ticle acting on itself as zero, E j�r j�
0. For notational con-
venience, let E jm
Em�r j� so that the electric field at position
rl arising from a particle j can be written as

Elj = �
k
�� g�rl − r j�� j

k�r j�dSj�� f j
k� � j

k�r j�n̂ j

· �E j0 + �
m=1

N

E jm	dSj� , �22�

which combines Eqs. �18�, �19�, and �21�. When this field
acts on a particle at rl, it will excite a number of eigenmodes
h with expansion coefficients al

h. To further simplify the ex-
pressions, define

�lj
h 
 f l

h� �l
h�rl�n̂l · EljdSl, �23�

which is the expansion coefficient associated with the hth
eigenfunction of the electric field at particle l arising from
particle j. Then the expression for the expansion coefficient
is

�lj
h = �

k
� f l

h� � �l
h�rl�n̂l · g�rl − r j�� j

k�r j�dSjdSl

�� j0
k + �

m=1

N

� jm
k 	� . �24�

The factor in Eq. �24� involving the Green’s function repre-
sents the overlap between the surface charge eigenfunction
of one particle and the surface dipole eigenfunction of the
other. This is an important result as it clearly shows an asym-
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metry in the coupling from one particle to another. This fac-
tor can be represented by a coupling matrix

Clj
hk 
 f l

h� � �l
h�rl�n̂l . g�rl − r j�� j

k�r j�dSjdSl, �25�

so that Eq. �24� takes on a simple form

�lj
h = �

k

Clj
hk� j0

k + �
k

�
m=1

N

Clj
hk� jm

k . �26�

Finally, we recognize that the sum over particle numbers can
also be removed by summing over j. Let �l

h
� j=1
N �lj

h then the
expression can be re-arranged in terms of the applied field

�
j=1

N

�
k

�
 jl

kh − Clj

hk�� j
k = �

j=1

N

�
k

Clj
hk� j0

k . �27�

This is a matrix equation that can be inverted to obtain the
expansion coefficients in terms of the applied field, taking
into account the interactions between the particles. In the
notation that has been introduced, the expansion coefficient
is

aj
k = f j

k� � j
k�r j�n̂ j · �E0�r j� + �

m=1

N

Em�r j�	 · dSj = � j0
k + � j

k.

�28�

By inverting Eq. �27� the expansion coefficient is given by

aj
k = � j0

k + �
h

�
l=1

N

�
m=1

N

�
d

�
kh
 jl − Clj
hk�−1Clm

hd�m0
d , �29�

where the sums over l and m are over particles and those
over h and d are over the eigenfunctions. Note that Cjj

hk
0,
which follows from our definition that the electric field from
particle j acting on itself is zero. For a large number of
particles, the analytic evaluation of Eq. �29� is complicated
by the need to invert the matrix involving the coupling co-
efficient. However, computationally it is straightforward to
evaluate, involving only sums over the particles and knowl-
edge of the geometry, eigenmodes, and relative positions.

From Eq. �25� the important parameters that determine
the coupling between particles are the resonance strength of
the particle, the surface dipole distribution of the particle, the
surface charge distribution of the other particle, the distance
between the particles, and finally the relative orientation of
one particle in relation to the other, expressed though the unit
normal. The ramifications of this will be examined in Sec.
IV. However, for completeness we conclude this section by
including the effect of radiation damping into the formalism.

B. Radiation damping with multiparticle coupling

Up to this point we have neglected radiation damping.
However, this is important as it will affect the resonances
associated with particle ensembles and it will be useful to
obtain an analytical expression for it in terms of the interpar-
ticle coupling. In this section we confine our discussion to
dipole radiation which can be included in the multiple par-

ticle interaction in a straightforward manner. We combine a
radiation dipole term with the electric fields acting on a par-
ticle and carry through with the derivation as in Sec. II. The
dipole term analogous to Eq. �23� is

pj
k 
 f j

k� � j
k�r j�n̂ j · p jdSj , �30�

where p j is the dipole moment of particle j. The expansion
coefficient �Eq. �29�� becomes

aj
k = � j0

k + i�pj
k + �

h
�
l=1

N

�
m=1

N

�
d

�
kh
 jl − Clj
hk�−1

Clm
hd��m0

d + i�pm
d � , �31�

where �=k3 /6��b.
By defining another matrix

Mjn
kd = 
 jn
kd + �

h
�
l=1

N

�
kh
 jl − Clj
hk�−1Clm

hd, �32�

this expression can be written more compactly as

aj
k = �

m=1

N

�
d

Mjm
kd ��m0

d + i�pm
d � . �33�

To solve this equation, the induced dipole moment is ex-
pressed in terms of the expansion coefficient so that

p j = �
k

aj
kp j

k. �34�

By using Eq. �33� and rearranging for p j we have

p j = �
m=1

N

�
d

�
k

p j
kMjm

kdbm
d · �Em0 + i�pm�

= �
m=1

N

�J jm · �Em0 + i�pm� , �35�

where we have introduced the matrix dyadic

�J jm = �
d

�
k

p j
kMjm

kdbm
d . �36�

Again, Eq. �35� is in the form of a matrix equation. Its solu-
tion can be written in the form

pm = �
j

�
n

�IJ
 jm − i��J jm�−1�J jn · En0. �37�

When substituted into Eq. �30� and the result combined with
Eq. �33� the expansion coefficient is given by

aj
k = �

m=1

N

�
d

Mjm
kdbm

d · �
n=1

N

�IJ
nm − i��Jnm�−1 · En0, �38�

which can be used to determine the electric field strength
arising from a particle and its dependence on radiation losses
for multiple particles.
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IV. COUPLING BETWEEN PARTICLE PAIRS

The coupling coefficient �Eq. �25�� and the surface charge
expansion coefficient �Eq. �29�� play important roles in de-
termining the excitation of nanoparticle resonances by an
applied electric field and by the evanescent fields from
nearby particles. The expressions are complicated by allow-
ing for the excitation of multiple particles and many different
modes. To examine the features of these expressions, the
problem is greatly simplified by considering just two par-
ticles and assuming that the incident electric field is at a
frequency that excites only one eigenmode within each par-
ticle. This is often the case when the frequency of the inci-
dent electric field is close to a resonance of the particle. We
shall assign the subscripts 1 and 2 to the two particles and,
since each particle is associated with a unique eigenmode,
we omit the separate labels for the modes. For simplicity,
radiation damping will be neglected in the first instance.
With reference to Eq. �29�, in matrix form we have the cou-
pling coefficient

Clm
hd →  0 C12

C21 0
� , �39�

and

�
kh
 jl − Clj
hk�−1 →  1 − C12

− C21 1
�−1

=
1

1 − C12C21
 1 C12

C21 1
� , �40�

so that the amplitudes are

a1

a2
� = �10

�20
� +

1

1 − C12C21
C12C21 C12

C21 C21C12
��10

�20
� .

�41�

The terms in the matrix have a simple interpretation. The
factor C12 represents the coupling of the field from particle 2
to particle 1. The factor C12C21 represents the coupling from
particle 1 to 2 and then back from 2 to 1. Explicitly

a1 =
�10 + C12�20

1 − C12C21
, �42�

and

a2 =
�20 + C21�10

1 − C12C21
. �43�

The coupling coefficients, and therefore the surface charges
and associated electric fields, become large when the real
part of the denominator in Eq. �42� or �43� is zero. This
factor is the determinant associated with the matrix inverse
�Eq. �40�� and it controls the resonance of the particle pair.
However, the far-field dipole radiation of the pair of particles
depends on their combined dipole moments, which depends
on the relative signs of the coupling coefficients. In the fol-
lowing sections we consider the effect of coupling on the
resonance frequencies and on the evanescent fields. As we
show, this leads to a situation where a particle pair can ex-
hibit a collective dark mode.

A. Resonance splitting

The proximity of resonant particles to one another leads
to coupling through their induced electric fields which alters
their resonant frequencies. This effect has been used in the
“plasmon ruler” to measure the distance between particles
optically.52,53 The resonances are obtained from the condition
that the determinant in Eq. �40� is zero. The resonance con-
dition is easily found by re-writing the coupling coefficient
to show explicitly the dependence on the electric permittiv-
ity. Let C12= ��−�b��12 / ��1−��, where �1 is the permittivity
associated with eigenvalue �1 through Eq. �3�, and similarly
for C21. Then the condition for a resonance takes the form

��1 − ����2 − �� − �12�21�� − �b�2 = 0. �44�

As this equation is quadratic, we see that it can have two
solutions for the particle permittivity � required for the pair
to resonate, which varies depending on the degree of cou-
pling between the particles. Define �12

av
��2+�1� /2 to be the
average of the eigenvalue permittivities for the two particles
and ��21
��2−�1� /2 as half the difference, then the particle
permittivity is given by

� =
�12

av − �12�21�b

1 − �12�21

�
��1 − �12�21���21

2 + �12�21��12
av − �b�2�1/2

1 − �12�21
, �45�

which solves for the real part of the electric permittivity. For
no coupling Eq. �45� gives two solutions for the permittivity
that correspond to the resonances of the individual particles.
The coupling leads to a shift in these resonant frequencies.
For identical particles with the same resonant frequency, the
two solutions represent a splitting of this resonance into two
separate frequencies.

An estimate of the effect on the surface charges of the
resonance splitting can be obtained from Eqs. �42� and �43�
by assuming we have two particles that are almost identical
so that their surface charge eigenfunctions �1��2=�p and
the coupling of the incident field �10��20=� are approxi-
mately the same. Furthermore, let there be a small difference
in their coupling coefficients so that C12�C�1+
� and C21
�C�1−
�, where 
 is taken only to first order. The surface
charge induced on each particle is determined to first order in

 by the amplitudes

a1 � ��1 + C + C
�/�1 − C2� �46�

and

a2 � ��1 + C − C
�/�1 − C2� , �47�

and the total surface charge of the pair of particles is given
by

� = �a1 + a2��p � 2�p�/�1 − C� . �48�

At resonance there are two possible values for the coupling
coefficient. For C=1 there is a strong resonance for the par-
ticle system, where, to first order, the denominators in Eqs.
�46�–�48� are zero. �For this discussion we ignore the imagi-
nary part of the resonance factor.� The surface charges in-
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duced on both particles are in phase and sum to give a large
resonant response, which is a symmetric resonance mode.
This corresponds to the smaller permittivity in Eq. �45� and a
shorter wavelength �blueshifted� resonance. However when
C=−1 the combined system has a very weak resonance since
the denominator in Eq. �48� remains finite. But examination
of Eqs. �46� and �47� shows that the individual amplitudes a1
and a2 are large and have opposite signs indicating an anti-
symmetric resonance mode. Moreover, since the combined
response is weak, this mode will have a small dipole moment
and low scattering of radiation. This is a dark mode. The
strength of the fields in this mode is controlled by the frac-
tional difference 
 between the coupling coefficients.

The splitting and the associated modes can be calculated
using the numerical procedures outlined by Mayergoyz and
colleagues37–39 based on a two-particle system of metal
stripes. The stripe system was chosen as it can be reproduced
using lithographic means enabling an experimental test of
the theory. The geometry of the stripes is given in Table I.
For numerical implementation, the surfaces were tessellated
with triangles as shown in Fig. 1. The coupling between
them is controlled by varying their separation.

Eigenvalue problem �3� was solved for the two stripes
individually yielding the eigenvalues, surface charge, and
surface dipole eigenfunctions needed to evaluate the cou-
pling coefficients. The electric permittivities as functions of

edge-to-edge separation �Fig. 1� of the two stripes were cal-
culated using Eq. �45� and the results are shown in Fig. 2.
There are two branches corresponding to the two modes for
this pair of particles. In addition, by treating the separated
stripes as elements of a single system, we can solve eigen-
value problem �3� for the ensemble and deduce the permit-
tivities associated with resonances from the eigenvalues us-
ing Eq. �4� with �b=1. These are shown as the points in the
figure for the two lowest eigenvalues ��1. There is good
agreement between the two methods, as would be expected,
except at very small separations. In particular, the high-
frequency �smaller permittivity� mode begins to deviate sig-
nificantly from Eq. �45� which is due to significant coupling
from the higher-order modes. In this case the assumption that
only one mode in each stripe is significant is breaking down.

A measure of the interaction of incident light with the two
stripes is given by the cross section for dipole scattering54

Csca =
k4

6�
� p

E0
�2

, �49�

where p is the dipole moment of the ensemble of stripes. The
scattering cross section is shown in Fig. 3, normalized to the

FIG. 3. �Color online� The scattering cross section �arbitrary
units� for the two stripe system for four different separations. The
stripes were taken to be gold embedded in PMMA.

TABLE I. The dimensions of the stripes used in the simulations
and the first eigenvalue. The resonance wavelength associated with
the eigenvalue corresponds to a gold stripe embedded in a material
with a permittivity of �b=2.2 �e.g., PMMA�. The units are arbitrary
as only the aspect ratios are important in the electrostatic
approximation.

Shape Length Width Thickness
No.

triangles

Fundamental
eigenvalue

and wavelength

1 270 100 40 496 1.1423 �925.1 nm�
2 300 100 40 560 1.1233 �978.6 nm�

FIG. 1. �Color online� This shows the triangle tessellation of the
two numerical stripes used to model the coupling. The color �online
version� represents the surface dipole distribution associated with
the first resonance of each individual stripe, where blue is positive
and red is negative.

FIG. 2. �Color online� The permittivity associated with the reso-
nance of the two-particle �stripes� system, based on Eq. �45� as a
function of the separation of the stripes. The permittivities calcu-
lated from the eigenvalues of the coupled system are shown for the
low-frequency �circles� and high-frequency �triangles� modes.
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short-wavelength resonance for the two stripes when sepa-
rated by 400 units. As discussed above, the higher-frequency
�shorter wavelength� resonance becomes blueshifted as the
separation of the two stripes is reduced. The lower frequency
�longer wavelength� resonance is redshifted but it is also sig-
nificantly diminished in strength, indicating a reduction in
the scattering from the pair of stripes. For the 20 unit sepa-
ration the lower-frequency cross section is very small and is
redshifted to 1220 nm.

The component of the induced electric field parallel to the
long axes of the stripes at a point 10 units from one end of
the larger stripe is shown as a function of wavelength in Fig.
4. The incident electric field was chosen with unit amplitude
and a polarization parallel to the long axes of the stripes. The
striking feature of these data is the strong electric field at
1010 nm corresponding to a separation of 100 units, even
though the scattering cross section is very small at this wave-
length. This simple system, consisting of two stripes with
slightly different resonances, exhibits a strong electric field
but very little scattering, corresponding to the formation of a
dark mode. The slight length difference between the two
stripes creates an asymmetry that results in a small residual
dipole moment for the pair. The external electric field
couples to the stripes through this residual dipole moment.
This general trend is consistent with the simple analysis
given above.

B. Radiation damping and dark modes

It is of interest to examine the radiation damping associ-
ated with this system and the effect on the dark mode. For

this calculation we need to specify a scale for the stripes, as
discussed in Sec. II. In Fig. 5 we reproduce the scattering
cross section for the particle without radiation damping and
include the cross sections when the scale is chosen so that
the longer stripe is 100 and 150 nm long. The cross sections
have been normalized to bring their maxima to the same
value. Also in this figure is the component of the induced
electric field parallel to the long axes of the stripes, calcu-
lated at a point 10 units beyond the long axis of the longer
stripe. The radiation damping increases with the size of the
stripes. The effect of radiation damping is to broaden and
reduce the scattering cross section associated with the sym-
metric mode at 900 nm but has little effect on the asymmet-
ric mode at 1010 nm. The electric fields associated with the
symmetric mode are significantly reduced by the damping.
The interesting feature is that this is not true for the asym-
metric dark mode. There has only been a small decrease in
the field strength with radiation damping because the dipole
moment of the pair of stripes is small, due to the asymmetry
of the mode. The radiation damping depends on the dipole
moment which is suppressed in this configuration. More im-
portantly, for larger stripes the electric fields of the dark

FIG. 4. �Color online� �a� The real and imaginary parts of the
component of the electric field parallel to the long axes of the
stripes. The field is calculated at a point 10 units from the long axis
of the longer stripe. The imaginary component indicates the wave-
length where the coupled stripes resonate. Note the significant elec-
tric fields at 1010 nm even though the scattering cross section at this
wavelength is small. The stripes were taken to be gold embedded in
PMMA. �b� The surface dipole distributions for two modes when
the stripes are far apart �400� and close �100�: the arrow indicates
the point where the electric field is calculated.

FIG. 5. �Color online� The effect of radiation damping on the
scattering cross section of a pair of stripes �gold embedded in
PMMA� and on the electric field component 10 units beyond the
long axis of the longer stripe. The scales refer to the length of the
longer stripe. The radiation damping varies with the size scale
whereas the unscaled stripe has no radiation damping.
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mode are stronger than the symmetric mode and the widths
of the resonances are narrower.

C. Orientation dependence and asymmetry

The coupling between particles depends not only on the
modes excited within each particle, but also on the geometry
of one particle relative to the other �for example, Fig. 6�.
Referring to Eq. �25�, the coupling is simply the integrated
response of the individual couplings between the surface
charge � j

k�r j� at a point r j on the surface of particle j and the
surface dipole moment �l

h�rl�n̂l at a point rl on the surface of
particle l. The coupling is mediated through the electric field
arising from the surface charge at each point of particle j.
The field has a direction given by �rl−r j� / �rl−r j� but it is
only the component of this field parallel to the surface nor-
mal n̂l at rl on particle l that is important. The surface dipole
and surface charge eigenfunctions for the same mode are
similar in form but are not identical. This means that for two
particles j and l that are not identical, the coupling from
particle j to particle l is likely to be different from the reverse
coupling, from particle l to particle j. This is due to the
different characteristics of the surface charge and surface di-
pole distributions over the respective particles with the result
that Clj�Cjl. In addition to this, there are shape- and
geometry-dependent terms that can introduce an asymmetry,
which comes about through the dependence of the coupling
on the direction vector from the surface of particle j to par-
ticle l in relation to the surface normal of particle l. The

relative orientation of one particle to another is also impor-
tant in this respect.

As an example of asymmetry, the coupling between two
identical triangular prisms as a function of displacement is
shown in Fig. 6. In this model the prisms are identical, being
300 units long, 100 units across at the base, and tessellated
with 560 surface elements. The eigenvalue for the fundamen-
tal mode is �=1.0740. Figure 6�a� shows the two coupling
directions, the surface charge, and surface dipole distribu-
tions. The arrows point from the surface charge of one prism,
in the direction of the coupling, to the other prism which
shows the surface dipole distribution. Note how the surface
charges tend to accumulate at the sharp points, a well-known
property of electric charge, whereas the surface dipoles are
more evenly distributed. The ratio of the coupling coeffi-
cients is shown in Fig. 6�b� as a function of separation be-
tween the prisms. As expected, the coefficients are different
and this becomes more pronounced as the particles approach
one another. The dominant terms in the integral of Eq. �25�
for the coupling coefficient occur for the closest points be-
tween each prism. These points lie along the base of prism 1,
which has its surface normal directed toward prism 2, but
they lie along sides of prism 2 that lead to is apex. These
sides have surface normals almost at right angles �80.5°� to
the direction of prism 1. This means that the coupling C21
will be smaller than C12, on account of the n̂2 . �r2−r1� term.
This asymmetry should become more pronounced as the
prisms approach one another, and this is born out in Fig.
6�b�.

V. CONCLUSION

In this paper we have derived analytical formulas that
describe the interactions between arbitrary numbers of me-
tallic nanoparticles in the electrostatic approximation. The
key result is a description of the coupling coefficients that
contain explicitly the effects of the electric field from one
particle acting on the surface dipoles of another and shows
the relationship between the geometry, surface modes, and
the localized surface-plasmon resonances of the particles. In
addition we included the effects of radiation damping into
the formalism, which is important when optimizing the reso-
nances and the strengths of the electric fields. Some of the
features of the method were demonstrated with a two-particle
system consisting of gold stripes embedded in PMMA
�polymethylmethacrylate�, as could be formed using litho-
graphic methods. By restricting each of the particles to single
resonant modes, the coupling matrix is easily written down
and solved. It was shown how the coupling between particles
leads to changes in the resonances of the ensemble and how
this leads to two different resonant modes. The asymmetric
mode was associated with a dark mode and it was demon-
strated that it has markedly reduced scattering, low radiation
damping, and large electric fields. The analytical form of the
coupling coefficients shows an inherent asymmetry in the
coupling and this was demonstrated with an example of the
coupling between triangular prisms.

While we have concentrated on two-particle coupling, it
is straightforward to write down and solve the matrix for

(b)

(a)

FIG. 6. �Color online� The asymmetry in coupling coefficients
associated with identical asymmetric particles. �a� the triangular
prisms showing the surface charge � and surface dipole � eigen-
modes, the coupling coefficients, and the “direction” of the cou-
pling. �b� a graph of the coupling ratio vs separation between the
prisms, demonstrating the asymmetry.
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three particles, provided each is restricted to a single mode.
This leads to more complex interactions and greater freedom
in designing structures with the desired electromagnetic
properties. This will be investigated in future publications. In
general, this work can be used for an arbitrary number of

interacting particles and should lead to a further understand-
ing of the stimulation of dark mode structures, the enhance-
ment of near-fields through particle interaction, design of
SERS substrates, plasmon solar cells, and the design of
highly sensitive plasmon-based sensors.
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